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Abstract. The aim of this paper is to control the vehicle system to move orderly by a feedback signal in
the optimal velocity (OV) model under open boundary. Following the description of the OV model and its
stability analysis, some problems about the definition of traffic jams in [12] are presented and illustrated
by an example. Based on our analysis, a feedback signal acting on the traffic system has been introduced
into the OV model. The signal will act in the system only if the state is inhomogeneous, and it will vanish
in the homogeneous traffic flow. Theoretically, it is proved that the disorder state in traffic system could be
suppressed by using the control method. Two kinds of noises are tested in our computer simulations. The
simulation results demonstrate that the traffic system can move into a homogeneous phase by the control.

PACS. 07.05.Dz Control systems – 05.70.Fh Phase transitions: general studies – 89.90.+n Other topics
in areas of applied and interdisciplinary physics

1 Introduction

In recent years, traffic problems have been widely inves-
tigated [1–10]. In order to understand the complex traffic
behavior, several traffic flow models have been developed,
including macroscopic models where traffic is viewed as
a compressible fluid formed by the vehicles, and micro-
scopic models where individual vehicle is represented by
a particle and the vehicle traffic is treated as a system
of interacting particles driven far from equilibrium. Most
of the works were focused on the traffic jam transitions
and the mechanism of the traffic jam phenomena [6–10].
It is well known that traffic jams bring not only traffic
safety problems but also environment pollution problems
in traffic flow. Therefore, the solution of traffic jams is
very important, which incites us to use new method to
avoid the traffic jams.

In many works, the jamming transitions and charac-
teristics of traffic jams have been investigated in the opti-
mal velocity (OV) model [11–13]. The OV model proposed
by Bando et al. [7], is a favorable one of the microscopic
traffic models and has been studied in great detail by us-
ing the numerical and analytical methods. In this model,
each vehicle is described by a simple differential equation
using OV function, which is dependent on the headway
distance, and each driver controls the velocity based on
the OV function. Konishi et al. [11,12] investigated the
traffic jams phenomena under periodic boundary condi-
tion and derived a simple stability condition of the OV
model. Komatsu and Sasa [13] studied the traffic jams on
the OV model in detail. However, there are seldom studies
on controlling vehicle traffic system from jams to homo-
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geneous states. In the present study, a feedback signal is
utilized to control the vehicle traffic from jams to order
states. The paper is organized as follows: the OV model
and its stability analysis are reviewed in Section 2. And
some problems about the definition of traffic jams pro-
posed by Konishi et al. [12] are presented and illustrated
by an example. We introduce the controlling method and
give its theoretical analysis in Section 3. Our simulations
are shown in Section 4. The final section is our conclusions
and future works.

2 Optimal velocity model

2.1 Description of model

Our investigations are based on the optimal velocity (OV)
model under open boundary condition. The leading vehi-
cle is described as follows [7]

x1(t) = v0t + x1(0) (1)

where x1(t) > 0 is the position of the leading vehicle at
time t, v0 > 0 is its velocity which is a constant at any
time, and x1(0) > 0 is its initial position.

The following vehicle is described by the following
equation of the motion of vehicle i [7]

d2xi(t)
dt2

= a

[
A(∆xi(t)) − dxi(t)

dt

]
∆xi(t) = xi−1(t) − xi(t), i = 2, 3, . . . , N (2)

where xi(t) > 0 is the position of the ith vehicle at time t,
∆xi(t) is the headway distance between the ith vehicle
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and its front vehicle (i − 1)th vehicle at time t, a is the
sensitivity of the driver, and N is the total number of
vehicles.

A driver adjusts the car velocity to approach the opti-
mal velocity, which is determined by the observed headway
distance. The sensitivity a allows for the time lag 1/a that
makes the car velocity reach the optimal velocity when the
traffic is varying. Generally, it is necessary that the opti-
mal velocity function has the following properties: it is a
monotonically increasing function. The optimal velocity
has been given by [7]

A (∆xi(t)) = tanh (∆xi(t) − xc) + tanh(xc)

where xc is the safety distance, tanh(·) is the hyperbolic
tangent function.

2.2 Stability analysis

Konishi et al. [12] rewrote the dynamical equation (2) of
the following vehicles as

dvi(t)
dt

= a [A(∆xi(t)) − vi(t)]

d∆xi(t)
dt

= vi−1(t) − vi(t), i = 2, 3, . . . , N. (3)

Assume the lead vehicle runs constantly with speed v0,
and then the following vehicles have the following steady
states [12]:

[v∗i (t), ∆x∗
i (t)]

T =
[
v0, A

−1(v0)
]T

. (4)

After linearizing the vehicle system (3) around steady
state (4), the relation between the (i− 1)th vehicle veloc-
ity disturbance and the ith vehicle velocity disturbance is
obtained [12]

Vi(s) = G(s)Vi−1(s) (5)

where Vi(s) = L(v̄i(t)), Vi−1(s) = L(v̄i−1(t)), L(·) denotes
the Laplace transform (the Laplace transform is an inte-
gral transform perhaps second only to the Fourier trans-
form in its utility in solving physical problems) [14,16]

v̄i(t) = vi(t) − v0, v̄i−1(t) = vi−1(t) − v0.

The transfer function G(s) is

G(s) =
aΛ

d(s)

Λ =
dA(∆xi(t))
d(∆xi(t))

∣∣∣∣
∆xi(t)=A−1(v0)

=
1

[cosh(A−1(v0) − xc)]
2 (6)

where cosh(·) is the hyperbolic cosine function.
The characteristic polynomial d(s) is

d(s) = s2 + as + aΛ.

According to control theories, Konishi et al. directly de-
rived a simple definition about traffic jams occurring for
the OV traffic model [12]. The definition is given as
follows [12].

Definition 1. Assume that characteristic polynomial d(s)
is stable. If H∞ − norm of G(s) is greater than 1, that is

‖G(s)‖∞ = sup
ω∈[0,+∞)

|G(jω)| > 1

then traffic jam occurs in the OV traffic model.
Here a real polynomial d(s) is said to be stable if all its

roots lie in the left half-plane. The term “stable” is used
to describe such a polynomial because, in the theory of
linear servomechanisms, a system exhibits unforced time-
dependent motion of the form est, where s is the root
of a certain real polynomial d(s). A system is therefore
mechanically stable if d(s) is a stable polynomial [15,16].

From Definition 1, Konishi et al. pointed out that the
traffic jam never occurs when the following two condi-
tions are satisfied: (1) ‖G(s)‖∞ ≤ 1; (2) d(s) is a stable
polynomial. From control theory view, the definition for
traffic jam is no problem. However, traffic system, which
has its special characteristics, cannot simply be treated
as a control system. We will discuss some problems about
Definition 1 in detail in the following section.

2.3 Some problems about Definition 1

In general, there are two kinds of disturbance for real traf-
fic system (a disturbance is a signal which causes some
variations in the normal condition of the original sys-
tem), including helpful disturbances, which are desirable
for traffic systems, and harmful disturbances, which may
lead to traffic jams in most cases. Therefore, Definition 1
is unsuitable for helpful disturbances, which is still viewed
as a normal signal. When ‖G(s)‖∞ > 1, the signal will am-
plify upstream. And the larger the helpful signal becomes,
the better the traffic system runs. There is no traffic jam
in this case, although ‖G(s)‖∞ is greater than 1. Such
example will be considered on computers.

The simulations are carried out in the OV model under
open boundary. The vehicles system in a road with the
length of 200 m is studied. The parameters are set as a =
1.0, xc = 2.0, v0 = 0.964, which is same as paper [12].
In this case, the characteristic polynomial d(s) is stable
and ‖G(s)‖∞ > 1. Fourth-order Runge-Kutta method is
used for numerical integration with time step ∆t = 1/128
in the OV model. The system has no car at initial state.
From the left side, the upper stream, a car is injected with
a probability r = 0.6 every second if the distance between
the left side and the tail of the sequence of cars is larger
than xc. The initial speed of the injected car is zero.

We show the spatio-temporal pattern of the traffic flow
in the OV model with a disturbance. The external step
disturbance is added as the following:

v1(t) =




v0, if 0 ≤ t ≤ 500

3
2v0, if 500 < t ≤ 1000.
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Fig. 1. (a) Space-time diagram in the OV model with a helpful disturbance (t > 500); (b) headway distance at t = 500 s and
t = 1000 s corresponding to Figure 1a; (c) velocity at t = 500 s and t = 1000 s corresponding to Figure 1a.

Obviously, external step disturbance is helpful to the traf-
fic system. Figure 1a shows the local space-time diagram
of the OV model. To avoid transient state, two parts on the
road, the upstream 50 m and the downstream 50 m, are
discarded. From Figure 1a, it is found that there is no ob-
vious high-density region after the disturbance is added. In
order to get information on the spatial organization of the
vehicles, the variations of corresponding distance-headway
and velocity at t = 500 and t = 1000 are placed in Fig-
ures 1b and 1c, respectively. Without the disturbance, the
vehicles freely run on the road. Compared with no distur-
bance traffic system, there are larger headway distances
between two successive vehicles to make the vehicle sys-
tem move freely with larger speed in the OV model with
the step disturbance. Furthermore, the simulation data
show that the helpful disturbance brings the increase of
the flux in the traffic system. The results demonstrate
that traffic flow is at free state after the step disturbance
is introduced. That means in this case there is no traffic
jams in the disturbed OV model when ‖G(s)‖∞ > 1 and
the characteristic polynomial d(s) is stable. However, two
noisy traffic systems under the two conditions of Defini-
tion 1 in [12] appear traffic jams. Therefore, it is uncer-
tain whether traffic jams occur in the OV models when
the two conditions of Definition 1 are satisfied. That is,
the two conditions given by Definition 1 are not sufficient
and necessary for traffic jams.

In addition, it is can be sure that the traffic jams never
occur when ‖G(s)‖∞ ≤ 1 and d(s) is a stable polynomial.
Whether the disturbance is helpful or harmful to the vehi-
cles system, it will decay upstream and vanish at the end.

In conclusions, it is certain that there is no traffic jams
in the OV model if ‖G(s)‖∞ ≤ 1 and d(s) is a stable
polynomial; it is uncertain that whether traffic jams occurs
or not if ‖G(s)‖∞ > 1 and d(s) is a stable polynomial. It
is necessary to redefine the concept about traffic jams. In

this paper, based on the analysis, a feedback control signal
is designated to suppress the traffic jam in the OV model.

3 Feedback control

A feedback control signal term ui(t) is designated to add
to vehicle dynamics (2):

dvi(t)
dt

= a [A(∆xi(t)) − vi(t)] + ui(t)

∆xi(t) = xi−1(t) − xi(t), i = 2, 3, . . . , N (7)

where the control signal ui(t) is:

ui(t) = k(vi−1(t) − vi(t)) (8)

k is the feedback gain, which is adjustable. The control
signal ui(t) is proportional to the difference between the
velocity vi−1(t) in front of vehicle i and its velocity vi(t) in
time t. It is noted that the control signal acts in the system
only if the state is unstable, and the signal vanishes in the
stable system.

The control system (7) can be linearized at the steady
state (4), that is


dv̄i(t)

dt
d[∆x̄i(t)]

dt


 =

[−a aΛ

−1 0

]
·
[

v̄i(t)
∆x̄i(t)

]

+
[

0
1

]
· v̄i−1(t) +

[
1
0

]
· ui(t),

v̄i(t) =
[
1 0

] · [ v̄i(t)
∆x̄i(t)

]
,

ui(t) = k[vi−1(t) − vi(t)] = k[v̄i−1(t) − v̄i(t)]
(9)
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where ∆x̄i(t) = ∆xi(t) − A−1(v0).
From frequency domain viewpoint, this linearized sys-

tem can be written as

Vi(s) = G11(s)Vi−1(s) + G12(s)Ui(s)

Ui(s) = k[Vi−1(s) − Vi(s)] (10)

where

G11(s) =
aΛ

d(s)
, G12(s) =

s

d(s)
. (11)

The relation between Vi−1(s) and Vi(s) is described as

Vi(s) = Ḡ(s) · Vi−1(s). (12)

Substitute equation (10) with equation (11), Ḡ(s) is
given by

Ḡ(s) = [G11(s) + k · G12(s)] · [1 + kG12(s)]
−1

=
aΛ + ks

d̄(s)
(13)

where

d̄(s) = d(s) + ks = s2 + (a + k)s + aΛ.

It is noted that equation (12) corresponds to equation (5).
According to our analysis, the traffic jams will never occur
in the controlled system if the characteristic polynomial
d̄(s) of Ḡ(s) is stable and the

∥∥Ḡ(s)
∥∥
∞ ≤ 1.

No traffic jams can be realized by adjusting the pa-
rameter k in the controlled system. Firstly, according to
Hurwitz stability criterion, d̄(s) is stable if


a + k > 0

aΛ > 0.
(14)

Equation (14) equals to k > −a, because of the OV
function characteristics of monotonously increase (namely
Λ ≥ 0) and a > 0. Therefore, the first condition for the
feedback gain k is given as

k > −a. (15)

Secondly, consider
∥∥Ḡ(s)

∥∥
∞ ≤ 1, that is

∥∥Ḡ(s)
∥∥
∞ = sup

ω∈[0,+∞)

∣∣Ḡ(jω)
∣∣

= sup
ω∈[0,+∞)

√
a2Λ2 + k2ω2

(aΛ − ω2)2 + (a + k)2ω2
≤ 1.

(16)

Equation (16) is tenable if the following equation is
fulfilled

a2Λ2 + k2ω2

(aΛ − ω2)2 + (a + k)2ω2
≤ 1. (17)

That is,

a2Λ2 + k2ω2 ≤ (aΛ − ω2)2 + (a + k)2ω2

(a2 + 2ak − 2aΛ)ω2 + ω4 ≥ 0. (18)

The sufficient condition for equation (18) is given as

a2 + 2ak − 2aΛ ≥ 0

k ≥ Λ − a

2
. (19)

Therefore, the second condition for the feedback gain k is
given as equation (19).

From the analysis above, we can infer that

Theorem 1. If the condition of (15) and (19) are satis-
fied, when a feedback signal (8) is added to the vehicle
system (2), traffic jams will never occur in the controlled
system (7).

For the given a and OV function, it is easy to deter-
mine the value of the feedback gain k. The traffic jams
are suppressed by the feedback signal (8), and the vehi-
cles move forward orderly with the control signal.

Since the space-time diagram can macroscopically
manifest the state of traffic flow, space-time diagram is
used to show spatio-temporal pattern of traffic flow. The
variation of the distance headway and velocity are consid-
ered to observe the variation of traffic state, also.

4 Simulation results

Our simulations are carried out in the same condition as
paper [12]. There are 100 vehicles running on a single road
under an open boundary. The road length is 200 m. The
parameters are set as a = 1.0, xc = 2.0, v0 = 0.964,
which are the same as the previous paper [12]. Fourth-
order Runge-Kutta method is used for numerical integra-
tion with time step ∆t = 1/128 in the OV model. The ini-
tial conditions are chosen as ∆xi(0) = xc, i = 2, . . . , 100,
vi(0) = A−1(xc) = v0.

Firstly, we show the spatio-temporal pattern of the
traffic flow induced by the noise in the OV model without
control. Figure 2a shows the space-time diagram of the
OV model with noise. The dimensionless noise, added to
the first equation of (2) for all vehicles, is assigned by
generating the random number with maximum amplitude
10−3. The generating noise is harmful to the traffic system.
The horizontal axis is defined as follows

x̄i(t) = L + xi(t) − x1(t), i = 1, 2, . . . , N.

It represents a distance between the leading vehicle and
the following vehicle and the leading vehicle is fixed at
200 m. The vertical axis indicates the time development.
Simulations are started from a homogeneous initial con-
dition, and the first 100 data are discarded to avoid tran-
sient. From Figure 2a, it can be found that the diagram ex-
hibits macroscopic phase segregation into disorder region
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Fig. 2. (a) Spatio-temporal pattern of the traffic flow
in the noisy OV model without control (t = 100 ∼ 500);
(b-c) headway distance at t = 100 s and t = 500 s cor-
responding to Figure 2a; (d-e) velocity at t = 100 s and
t = 500 s corresponding to Figure 2a.

upstream and order region downstream. In order to get in-
formation on the spatial organization of the vehicles, the
variations of corresponding distance-headway at t = 100
and t = 500 are placed in Figures 2b and 2c, respectively.
In Figures 2b-c, it is obvious that the distance-headway
is constant downstream, and gradually oscillates around
the constant headway distance upstream. The oscillation
amplitude increases with the increase of car index. Fig-
ures 2c-d shows the velocity behavior of all vehicles at
t = 100 and t = 500. From Figures 2c-d, it is can be
seen that the upstream group moves with constant veloc-
ity v0, and the velocity of the downstream group oscillates
around the constant velocity v0. The oscillation amplitude
increases with the increase of car index. That indicates
that traffic jam appears in the noisy OV model.

Secondly, in order to control the traffic flow from jam
to order, the feedback signal is designated as:

The feedback gain k is chosen according to equa-
tions (15) and (19). Substituting the parameter values
into equations (15) and (19), and then k ≥ 0.5 is ob-
tained. Let us fix the feedback gain k = 0.5. Figure 3 ex-
hibits the absolute values of the transfer function

∣∣Ḡ(jω)
∣∣

as the function of the feedback gain k. From the Bode-
plot,

∥∥Ḡ(s)
∥∥
∞ ≤ 1 when the feedback gain k is set to 0.5.

The condition (15) is also satisfied, so the characteristic
polynomial d̄(s) of Ḡ(s) is stable. Theoretically, no traffic
jams occur in the OV model if the feedback signal with
the gain k = 0.5 is introduced into system (2). The effect
of the feedback signal on the added noise is studied on
computer simulation.
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Fig. 4. (a) Spatio-temporal pattern of the traffic flow in the controlled OV model (t = 100 ∼ 500) with random noise;
(b-c) headway distance at t = 100 s and t = 500 s corresponding to Figure 4a; (d-e) velocity at t = 100 s and t = 500 s
corresponding to Figure 4a.

Thirdly, we study the traffic flow in the con-
trolled OV model with the random generat-
ing noise. Figure 4a shows the spatio-temporal
pattern of the traffic flow under the effect of the
feedback signal. From Figure 4a, it can be observed that
the traffic flow is homogeneous in the controlled system,
and all vehicles run orderly on the road. Furthermore,
the corresponding traffic series of headway pattern at
t = 100 and t = 500 placed in Figures 4b-c reveal order
behaviors on the road. Figures 4d-e shows the variation
of the velocity at t = 100 and t = 500 in the controlled
OV model. It is obvious that the traffic flow is at order
state when the feedback signal is introduced into the

noisy OV model. The results indicate that traffic jams
can be suppressed by a feedback control signal in a noisy
OV model.

Finally, let us add a step external disturbance on the
leader vehicle in the noisy OV model as follows

v1(t) =




v0/2, if 110 ≤ t ≤ 115

v0/2, if 130 ≤ t ≤ 135

v0, if otherwise.

(20)

Obviously, the step external disturbance shown in equa-
tion (20) is harmful. The generating noise is harmful to the
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Fig. 5. (a) Spatio-temporal pattern of the traffic flow in the OV model (t = 100 ∼ 500) with both external step disturbance
on the leading vehicle and random noise; (b-c) headway distance at t = 100 s and t = 500 s corresponding to Figure 5a;
(d-e) velocity at t = 100 s and t = 500 s corresponding to Figure 5a.
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Fig. 6. (a) Spatio-temporal pattern of the traffic flow in the controlled OV model (t = 100 ∼ 500) with both external step
disturbance on the leading vehicle and random noise; (b-c) headway distance at t = 100 s and t = 500 s corresponding to
Figure 6a; (d-e) velocity at t = 100 s and t = 500 s corresponding to Figure 6a.

traffic system. Figure 5a shows the spatio-temporal pat-
tern of the traffic flow in the running traffic model with the
step external disturbance. Figures 5b-c exhibits the head-
way distance at t = 100 and t = 500. Figures 5d-e shows
the variation of the velocity at t = 100 and t = 500. From
Figure 5, it can be seen that traffic jams still appear in
the OV model when the control signal has not been added.
Figure 6a and Figures 6b-c show the spatio-temporal pat-
tern of the traffic flow and the headway distance in the
controlled traffic model at t = 100 and t = 500, respec-
tively. Figures 6d-e shows the variation of the velocity at

t = 100 and t = 500. In Figure 6, it is obvious that the
traffic system is at order state. From all above, it is con-
firmed that no traffic jams occurs in the noisy OV model
if the feedback control signal has been used.

5 Conclusions and future works

The aim of this paper is to suppress the traffic jam by
using the feedback control signal in the OV model. The
signal acts in the system only if the state is unstable, and
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the signal vanishes in the stable system. Through theoret-
ical analysis and numerical simulations, we conclude that:

(i) By using the feedback signal, the congested state in the
traffic flow can be suppressed, and the vehicle traffic
appears homogeneous phase.

(ii) Two conditions in Definition 1 [12], ‖G(s)‖∞ > 1 and
stable d(s), are unsuitable for sufficient and necessary
conditions of traffic jam in system (5). In Section 2.3,
this is illustrated by a case where traffic system is dis-
turbed by a helpful disturbance and the two conditions
are satisfied. The simulation results show that no traf-
fic jam occurs in the system. Therefore, the definition
of robustness maybe not directly be used for no traf-
fic jam in the traffic system. While ‖G(s)‖∞ ≤ 1 and
stable polynomial d(s) are really sufficient for no oc-
currence of traffic jam.

(iii) Base on (ii), sufficient conditions for no traffic jam in
the controlled system (7) are derived in Theorem 1.
The conditions provide theoretical foundations for nu-
merical simulations.

(iv) Numerical simulations agree with our theoretical anal-
ysis. Our simulation results showed that the disorder
state in the uncontrolled system induced by harm-
ful disturbances disappeared when the control method
carried out in OV model. The simulation results vali-
date our theoretical analysis.

In this paper, we simply give the sufficient conditions for
no traffic jam in the controlled system (7). Therefore,
it would be interesting to study the necessary condi-
tions. The further work also includes considering the
definition of the traffic jams. This paper was partly sup-
ported by National Outstanding Young Investigation Grant
(70225005) and Project (70471088) of National Natural Science

Foundation of China, Foundation of Beijing jiaotong University
(2003SM031, 2003SM032) and Rencai Foundation of Beijing
jiaotong University (2003RC010), China.
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